Special Algebraic Structures for Integrability by compensation in PDEs

Francesca Da Lio
Mostly Maximum Principle, Cortona, May 29-June 3, 2022

A Remark

Let $f \in L^{1}(\mathbb{D})$ and v be a weak solution of

$$
\left\{\begin{array}{cc}
-\Delta v=f & \text { in } \mathbb{D} \tag{1}\\
v=0 & \text { in } \partial \mathbb{D}
\end{array}\right.
$$

In general a solution v of (1) is neither in $L^{\infty}(\mathbb{D})$ nor in $W^{1,2}(\mathbb{D})$. We can a-priori say that

$$
\nabla v \in \cap_{p<2} W^{1, p}(\mathbb{D}) \text { and } v \in \cap_{q<+\infty} L^{q}(\mathbb{D}) \text {. }
$$

Moreover

$$
v \in B M O(\mathbb{D}) \text { and } \nabla v \in L^{2, \infty}(\mathbb{D}) .
$$

The weak L^{2} space:

$$
L^{2, \infty}(\mathbb{D})=\left\{f \text { measurable : } \sup _{\lambda \geq 0} \lambda|\{x \in \mathbb{D}:|f(x)| \geq \lambda\}|^{1 / 2}<+\infty\right\}
$$

- It is a Banach Space, it is the dual of $L^{2,1}(\mathbb{D})$ space, the space of measurable functions f satisfying

$$
2 \int_{0}^{+\infty}|\{x \in \mathbb{D}:|f(x)| \geq \lambda\}|^{1 / 2} d \lambda<+\infty .
$$

- Recall that $\|f\|_{L^{2}(\mathbb{D})}^{2}=2 \int_{0}^{+\infty} \lambda|\{x \in \mathbb{D}:|f(x)| \geq \lambda\}| d \lambda<+\infty$ and

$$
L^{2,1}(\mathbb{D}) \varsubsetneqq L^{2}(\mathbb{D}) \varsubsetneqq L^{2, \infty}(\mathbb{D})
$$

The Riesz Potential $\frac{1}{|x|} \in L^{2, \infty}(\mathbb{D}) \backslash L^{2}(\mathbb{D})$ and $\frac{1}{|x| \log \left(|x|^{-1}\right)} \chi_{B(0,1 / 2)} \in L^{2}(\mathbb{D}) \backslash L^{2,1}(\mathbb{D})$.

Special case:

$$
f=\nabla b \cdot \nabla^{\perp} a=\partial_{x} a \partial_{y} b-\partial_{y} a \partial_{x} b, \quad \nabla a, \nabla b \in L^{2}(\mathbb{D})
$$

Theorem: [Wente, '69]
Let $\varphi \in W_{0}^{1,1}(\mathbb{D})$ be the solution

$$
\begin{cases}-\Delta \varphi=\partial_{x} a \partial_{y} b-\partial_{y} a \partial_{x} b=\nabla^{\perp} a \cdot \nabla b, & \text { in } \mathbb{D} \\ \varphi=0 & \text { on } \partial \mathbb{D} .\end{cases}
$$

Then $\varphi \in W^{1,2} \cap C^{0}(\mathbb{D})$ and

$$
\|\varphi\|_{L^{\infty}}+\|\nabla \varphi\|_{L^{2}} \leq C\|\nabla a\|_{L^{2}}\|\nabla b\|_{L^{2}}
$$

Special case:

$$
f=\nabla b \cdot \nabla^{\perp} a=\partial_{x} a \partial_{y} b-\partial_{y} a \partial_{x} b, \quad \nabla a, \nabla b \in L^{2}(\mathbb{D})
$$

Theorem: [Wente, '69], [Tartar, '83]
Let $\varphi \in W_{0}^{1,1}(\mathbb{D})$ be the solution

$$
\begin{cases}-\Delta \varphi=\partial_{x} a \partial_{y} b-\partial_{y} a \partial_{x} b=\nabla^{\perp} a \cdot \nabla b, & \text { in } \mathbb{D} \\ \varphi=0 & \text { on } \partial \mathbb{D} .\end{cases}
$$

Then $\varphi \in W^{1,2} \cap C^{0}(\mathbb{D})$ and

$$
\|\varphi\|_{L^{\infty}}+\|\nabla \varphi\|_{L^{2}}+\|\nabla \varphi\|_{L^{2,1}} \leq C\|\nabla a\|_{L^{2}}\|\nabla b\|_{L^{2}}
$$

Underlining Idea:

Let $\nabla a, \nabla b \in L^{2}\left(\mathbb{R}^{2}\right)$, then

$$
\left\|\left(\partial_{x} a \partial_{y} b-\partial_{y} a \partial_{x} b\right) * \log |x|\right\|_{L^{\infty} \cap \dot{W}^{1,2}\left(\mathbb{R}^{2}\right)} \leq C_{0}\|\nabla a\|_{L^{2}}\|\nabla b\|_{L^{2}} .
$$

- NOTE: Due to the special nature of the bilinear right-hand side one "gains" some integrability passing from $\operatorname{BMO}(\mathbb{D})$ to $L^{\infty}(\mathbb{D})$ and from $L^{2, \infty}(\mathbb{D})$ to $L^{2}(\mathbb{D})$.
- Remarks on Jacobian structure [Coifman, Lions, Meyer and Semmes ('93)]

If $\nabla a, \nabla b \in L^{2}\left(\mathbb{R}^{2}\right)$, then

$$
\nabla b \cdot \nabla^{\perp} a=\partial_{x} a \partial_{y} b-\partial_{y} a \partial_{x} b \in \mathcal{H}^{1}\left(\mathbb{R}^{2}\right)(=\text { Hardy Space })
$$

where

$$
\mathcal{H}^{1}\left(\mathbb{R}^{2}\right)=\left\{f \in L^{1}\left(\mathbb{R}^{2}\right): \int_{\mathbb{R}^{2}} \sup _{t>0}\left|\phi_{t} * f(x)\right| d x<+\infty\right\}
$$

$\phi_{t}(x):=t^{-2} \phi\left(t^{-1} x\right), \phi$ is some function in the Schwartz space $\mathcal{S}\left(\mathbb{R}^{2}\right)$ satisfying $\int_{\mathbb{R}^{2}} \phi(x) d x=1$.
The Hardy space is a strict subspace of L^{1} featuring a good behavior when being convoluted with Calderon-Zygmund kernels.

Counterexample to Wente's Inequality in the Context of Neumann Boundary Conditions

Theorem [Da Lio \& Palmurella, 2017], [Hirsch, 2017]
There are $a, b \in\left(L^{\infty} \cap H^{1}\right)(\mathbb{D})$ with $\int_{\mathbb{D}} \nabla^{\perp} b \cdot \nabla a d y=0$ such that every solution $\varphi \in W^{1,1}(\mathbb{D})$ of:

$$
\left\{\begin{array}{cc}
-\Delta \varphi=\nabla^{\perp} b \cdot \nabla a & \text { in } \mathbb{D}, \\
\partial_{\nu} \varphi=0 & \text { on } \partial \mathbb{D}
\end{array}\right.
$$

is neither in $H^{1}(\mathbb{D})$ nor in $L^{\infty}(\mathbb{D})$,

Fractional counterpart of the CLMS estimate for the Jacobians

One main issue:

$$
\nabla(a b)=\nabla a b+a \nabla b \quad \text { but } \quad(-\Delta)^{\frac{1}{4}}(a b) \neq(-\Delta)^{\frac{1}{4}} a b+a(-\Delta)^{\frac{1}{4}} b
$$

Let us call the bilinear operator $\mathcal{C}_{\frac{1}{2}}(a, b)$ to be the error of the missing product rule. That is

$$
\mathcal{C}_{\frac{1}{2}}(a, b)=(-\Delta)^{\frac{1}{4}}(a b)-(-\Delta)^{\frac{1}{4}} a b-a(-\Delta)^{\frac{1}{4}} b .
$$

We can also write this operator in integral form:

$$
\mathcal{C}_{\frac{1}{2}}(a, b)(x)=c \int_{\mathbb{R}} \frac{(a(x)-a(y))(b(x)-b(y))}{|x-y|^{1+\frac{1}{2}}} d y .
$$

Three-term commutator estimate

Theorem [DL \& Rivière, 2011]
Let $a, b \in C_{c}^{\infty}(\mathbb{R})$ then

$$
\left\|(-\Delta)^{1 / 4} \mathcal{C}_{\frac{1}{2}}(a, b)\right\|_{\mathcal{H}^{1}(\mathbb{R})} \precsim\left\|(-\Delta)^{\frac{1}{4}} a\right\|_{L^{2}}\left\|(-\Delta)^{\frac{1}{4}} b\right\|_{L^{2}}
$$

- NOTE: The above estimate represents the borderline case of the so-called Leibniz-Rules for Fractional Derivatives due to [Kenig, Ponce, Vega (1993)] obtained in the L^{p} spaces.

An Application: Regularity of Weak Harmonic Maps into a

 Closed Submanifold $\mathcal{N} \hookrightarrow \mathbb{R}^{m}$Critical points $u \in W^{1,2}(\mathbb{D}, \mathcal{N})$ of

$$
\mathcal{L}(u)=\frac{1}{2} \int_{\mathbb{D}}|\nabla u|^{2} d x^{2}
$$

[Hélein (1989)]: Case $\mathcal{N}=S^{m-1} \Rightarrow$ they satisfy

$$
-\Delta u^{i}=\sum_{j=1}^{m}\left[u^{i} \nabla u^{j}-u^{j} \nabla u^{i}\right] \cdot \nabla u^{j} \text { with } \operatorname{div}\left(u^{i} \nabla u^{j}-u^{j} \nabla u^{i}\right)=0
$$

By Poincaré Lemma there is $B \in W^{1,2}(\mathbb{D})$ such that $\nabla^{\perp} B_{i j}=u^{i} \nabla u^{j}-u^{j} \nabla u^{j}$, $\left(\nabla^{\perp} B_{i j}=\left(-\partial_{y} B_{i j}, \partial_{x} B_{i j}\right)\right)$ and

$$
-\Delta u^{i}=\sum_{j=1}^{m}\left(\partial_{x} B_{i j} \partial_{y} u^{j}-\partial_{y} B_{i j} \partial_{x} u^{j}\right)
$$

General smooth manifolds \mathcal{N}

- Moving Frame Method, [Hélein, 1991],
- Consequence of regularity for Schrödinger Systems with Antisymmetric Potentials in 2-D, [Rivière, 2006]

Theorem [Rivière, 2006]

Let $u \in W^{1,2}\left(\mathbb{D}, \mathbb{R}^{m}\right)$ and $\Omega \in L^{2}\left(\mathbb{D}, \mathbb{R}^{2} \otimes s o(m)\right)$ solve

$$
-\Delta u=\Omega \cdot \nabla u
$$

Then $u \in W_{l o c}^{1, p}\left(B^{2}, \mathbb{R}^{m}\right), \quad \forall p<+\infty$.

Remark:

The antisymmetry (which is an algebraic condition) and NOT the divergence-free structure (which a differential condition) of the potential is actually the essential structure in the regularity and compactness properties for conformally invariant variational problems in $2-\mathrm{D} \Rightarrow$ it is a conceptual change in Integrability by Compensation.

Heuristics: Why can we hope to have better regularity?
Example in 1-D:

$$
\ddot{y}=\Omega \dot{y}
$$

If Ω is antisymmetric then its eigenvalues are imaginary and the solution is bounded.

Antisymmetry in nonlocal framework

Theorem [DL \& Rivière, 2011, Mazowiecka \& Schikorra, 2018]
Let $v \in L^{2}\left(\mathbb{R}, \mathbb{R}^{m}\right)$ and $\Omega \in L^{2}(\mathbb{R}$, so $(m))$ solve

$$
(-\Delta)^{1 / 4} v=\Omega \cdot v
$$

Then $v \in L_{\text {loc }}^{p}(\mathbb{R})$ for $p<+\infty$.

Very Weak Solutions to Elliptic Systems in Divergence Form: New Compensation not based on Antisymmetry

Theorem [Jin, Maz'ya, Van Schaftingen, 2009]
There is $A \in C^{o} \cap W^{1,2}(\mathbb{D}, \operatorname{Sym}(n))$ such that for some $\lambda>0$

$$
\langle A \xi, \xi\rangle \geq \lambda|\xi|^{2}, \quad \forall \xi \in \mathbb{R}^{m} \quad \text { strong ellipticity }
$$

A symmetric and there is $u \in W^{1,1}(\mathbb{D}) \hookrightarrow L^{2}(\mathbb{D})$ such that

$$
\operatorname{div}(A \nabla u)=0 \text { i.e. } \partial_{x_{i}}\left(A_{i j} \partial_{x_{i}} u\right)=0
$$

but

$$
u \notin W_{l o c}^{1, p}(\mathbb{D}), \quad \forall p>1
$$

Question asked by Brezis.

Elliptic Systems with Critical Involution

Theorem [DL, Rivière, 2019]
Let $A \in W^{1,2}(\mathbb{D}, \operatorname{Sym}(n))$, such that $A^{2}=I d_{n}$ and let $u \in L^{2}\left(\mathbb{D}, \mathbb{R}^{n}\right)$ solve

$$
\operatorname{div}(A \nabla u)=0 \quad \text { in } \mathcal{D}^{\prime}(D)
$$

Then $u \in \bigcap_{p<2} W_{\text {loc }}^{1, p}\left(\mathbb{D}, \mathbb{R}^{n}\right)$.

- Observe that the system is elliptic with principal symbol $|\xi|^{2} A$ but it is not strongly elliptic in the Legendre-Hadamard sense since \bar{A} is not definite positive.

An Important Step: Bourgain-Brezis Inequality

Theorem [Bourgain \& Brezis 2002]
Let u be a function in \mathbb{R}^{2} such that $\nabla u \in\left(H^{-1}+L^{1}\right)\left(\mathbb{R}^{2}\right)$ Then

$$
\begin{equation*}
\|u-c\|_{L^{2}\left(\mathbb{R}^{2}\right)} \leq c\|\nabla u\|_{\left(H^{-1}+L^{1}\right)\left(\mathbb{R}^{2}\right)} \tag{2}
\end{equation*}
$$

where

$$
\|\nabla u\|_{\left(H^{-1}+L^{1}\right)\left(\mathbb{R}^{2}\right)}=\inf _{\substack{\nabla u=f+g \\ f \in H^{-1}, g \in L^{1}}}\left(\|f\|_{H^{-1}}+\|g\|_{L^{1}}\right)
$$

Remark

Our proof is based on the observation that the kernel of $\partial_{\bar{z} \bar{z}}^{2}$ which corresponds to $\mathcal{F}^{-1}\left[\frac{1}{(\xi)^{2}}\right] \in L^{\infty}$ and not only in BMO as the kernel of $\partial_{z \bar{z}}^{2}$.

- same phenomena appear in the context of 2 dimensional Euler equations with nonnegative vorticity, [Delort, 1991], [Evans \& Müller, 1994], [Semmes, 1994]

Boundary characterization of Hardy spaces

[Hardy, 1915]: For every $f: \mathbb{D} \rightarrow \mathbb{C}$ holomorphic

$$
r \mapsto \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p} d \theta \text { is non decreasing for every } p>0
$$

Hardy spaces, [Riez,1923]:

$$
\mathcal{H}^{p}(\mathbb{D})=\left\{f: \mathbb{D} \rightarrow \mathbb{C}: f \text { holomorphic, } \sup _{0<r<1} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p} d \theta<+\infty\right\} .
$$

If $f \in \mathcal{H}^{p}(\mathbb{D})$ then there $g \in L^{p}\left(S^{1}\right)$ exists and

$$
\lim _{r \rightarrow 1^{-}} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)-g\left(e^{i \theta}\right)\right|^{p} d \theta=0 \text { as well as } \lim _{r \rightarrow 1^{-}} f\left(r e^{i \theta}\right)=g\left(e^{i \theta}\right) \text {, a.e } \theta \text {. }
$$

Then one defines

$$
\|f\|_{\mathcal{H}^{p}(\mathbb{D})}:=\|g\|_{L^{p}\left(S^{1}\right)} .
$$

Boundary characterization of Bergmann space

$$
\mathcal{A}^{2}(\mathbb{D}):=\left\{f: \mathbb{D} \rightarrow \mathbb{C}: f \text { holomorphic and }\|f\|_{L^{2}(\mathbb{D})}<+\infty\right\}
$$

- One has

$$
\mathcal{H}^{1}(\mathbb{D}) \hookrightarrow \mathcal{A}^{2}(\mathbb{D}) \text { with }\|f\|_{L^{2}(\mathbb{D})} \leq C\|f\|_{L^{1}\left(S^{1}\right)} .
$$

- If $\lim _{r \rightarrow 1^{-}}\left\|f\left(r e^{i \theta}\right)\right\|_{H^{-1 / 2}\left(S^{1}\right)}<+\infty$ then the following inequality holds as well:

$$
\|f\|_{L^{2}(\mathbb{D})} \leq C\|f\|_{H^{-1 / 2}\left(S^{1}\right)}:=\lim _{r \rightarrow 1^{-}}\left\|f\left(r e^{i \theta}\right)\right\|_{H^{-1 / 2}\left(S^{1}\right)}
$$

Bergmann-Bourgain-Brezis type inequality

Theorem [DL, Rivière, Wettstein 2022]
$f \in \mathcal{A}^{2}(\mathbb{D})$ if and only if

$$
\|f\|_{L^{1}+H^{-1 / 2}\left(S^{1}\right)}:=\limsup _{r \rightarrow 1^{-}}\left\|f\left(r e^{i \theta}\right)\right\|_{L^{1}+H^{-1 / 2}\left(S^{1}\right)}<+\infty .
$$

Moreover, it holds

$$
\frac{1}{C}\|f\|_{L^{2}(\mathbb{D})} \leq\|f\|_{L^{1}+H^{-1 / 2}\left(S^{1}\right)} \leq C\|f\|_{L^{2}(\mathbb{D})}
$$

$\Rightarrow\|f\|_{L^{1}+H^{-1 / 2}\left(S^{1}\right)},\|f\|_{H^{-1 / 2}\left(S^{1}\right)}$ and $\|f\|_{L^{2}(\mathbb{D})}$ define equivalent norms on the Bergmann space $\mathcal{A}^{2}(D)$.

Fractional Bourgain-Brezis type inequality

Theorem [DL, Rivière, Wettstein 2022]
Let $u \in \mathcal{D}^{\prime}\left(S^{1}\right)$ be such that

$$
(-\Delta)^{\frac{1}{4}} u, \mathcal{R}(-\Delta)^{\frac{1}{4}} u \in \dot{H}^{-\frac{1}{2}}\left(S^{1}\right)+L^{1}\left(S^{1}\right) .
$$

Then

$$
\left\|u-f_{S^{1}} u\right\|_{L^{2}\left(S^{1}\right)} \leq C\left(\left\|(-\Delta)^{1 / 4} u\right\|_{\dot{H}^{-1 / 2}\left(S^{1}\right)+L^{1}\left(S^{1}\right)}+\left\|\mathcal{R}(-\Delta)^{1 / 4} u\right\|_{\dot{H}^{-1 / 2}\left(S^{1}\right)+L^{1}\left(S^{1}\right)}\right)
$$

Remark in the L^{1} case

- [Stein \& Weiss, 1960] Estimate in L^{1}.
- [Schikorra, A; Spector, D; Van Schaftingen 2017] Both summands necessary for 1-D domains for the L^{1} estimate namely $(-\Delta)^{\frac{1}{4}} u, \mathcal{R}(-\Delta)^{\frac{1}{4}} u \in L^{1}$.

